我国科学家在磁性外尔半金属中首次提出“自旋轨道极化子”概念

2020-12-09

  磁性量子材料的缺陷工程及其局域量子态自旋的调控,有望用于构筑未来实用化的自旋量子器件,是目前凝聚态物理研究的热点领域之一。研究该类材料磁性以及拓扑特性的一个有效方案是在原子尺度探究其空间局域激发态,但至今未见报道。

  在国家重点研发计划“量子调控与量子信息”重点专项等科技计划的支持下,中科院物理研究所的研究人员通过极低温-强磁场-自旋极化扫描隧道显微镜/谱和低温-原子力显微镜,研究了磁性外尔费米子系统Co3Sn2S2中的单原子缺陷附近的激发态。该研究首先利用非接触的原子力显微镜图像及功函数测量,确定解理产生的两种表面中的S原子终止面。进一步的自旋极化实验发现,在非磁性的S表面上围绕单原子S空位周围会形成空间局域的磁性的极化子。这些极化子表现为具有三重旋转对称性空间分布的束缚态激发的形式。此外,在垂直样品表面方向施加高达±6T的外部磁场的实验显示,无论磁场方向朝上还是朝下,局部磁极化子的结合能都随磁场强度的增加而线性增加,这表明轨道磁化作用对局域化磁矩(~1.35μB)具有主导作用。基于这一轨道磁矩的主导作用及在S空位明显的局域磁弹效应,该研究发现一种新的激发态, 硫化锌,即局域化的自旋轨道极化子。Co3Sn2S2显著的局域化轨道磁化与拓扑相关的贝利曲率和拓扑磁体磁电效应的循环电流有关。非磁性原子层上的SOP会对系统的局域磁性有显著的增强,同时也增强了时间反演对称性破缺导致的奇异拓扑物性。

  “自旋轨道极化子”有望在非磁性关联拓扑材料中引入内禀磁矩,从而形成“稀磁拓扑半金属”这一新的物质形态。该研究也预示可在新型量子拓扑材料中实现“缺陷量子工程”,即通过改变材料制备参数与原子操纵技术等对缺陷结构的尺寸、浓度与空间排布等进行精准控制,形成缺陷有序阵列等原子级可控结构, 纳米四氧化三铁,实现磁性量子材料的磁性与拓扑性质的精确调控,最终在量子器件中实现功能量子拓扑态的原子级定向构建和有序编织。研究成果为磁性外尔体系中磁序与拓扑性质调控提供了新思路,有助于新一代复杂功能量子器件开发。

 

 

 
 

扫一扫在手机打开当前页